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Representation of propagator for open quantum systems in the form of a double functional integral with

respect to conditional Wiener measure is proposed. It allows one to apply the approximate formulas exact for
functional polynomials of a certain power to calculation of such integrals. Within this deterministic approach
the problem is reduced to evaluation of usual (Riemann) integrals of low multiplicity. The formulas are in fact
the basis of a numerical method of studying time evolution of the systems. The features of the method are

discussed and some examples of calculations are given.
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The development of approximate functional integration
techniques promotes a wide utilization of functional integrals
in contemporary physics. The Monte Carlo technique is a
powerful tool and it is the most frequently used in applica-
tions. However, the problem of further development and cre-
ation of the methods which allow one to decrease computa-
tional burden for achievement of satisfactory results is
always actual. Along with the Monte Carlo method there
were suggested deterministic approaches [1-8]. In 1951 R.
Cameron offered a formula for approximate evaluation of
Wiener functional integrals, which is exact for functional
polynomials of a third power [1]. The formula is similar to
the quadrature rules for usual (Riemann) integrals, which are
exact for algebraic polynomials of a certain power. Such an
approach has later been applied to a general case of Gaussian
measures [6] and to the case of functional polynomials of an
arbitrary given power [7,8]. Cameron also established a con-
necting link between the Feynman path integral and the
Wiener integral [9]. The approach was developed further by
Doss, Azencott, and Haba [10-12]. Haba obtained a formula
which expressed the Feynman propagator through a func-
tional integral with respect to conditional Wiener measure
[12]. That makes possible to apply the approximate formulas
exact for functional polynomials of arbitrary given power to
the case of Feynman path integrals. The aim of the paper is
to expand the application area of the described approaches in
such a way that they can be used for studying the time evo-
lution of open quantum systems (OQS).

Dynamics of OQS is described with the help of the re-
duced density operator [13]. Feynman and Vernon have writ-
ten the matrix elements of the operator as follows [14,15]:

a0y = | dx, f (e 150,50kl i),

(1)

where the propagator J is expressed through the double path
integral
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Sx(n]=[ §O[mx2/ 2-V(x)]dr is a classical action for the sys-
tem in a potential field V(x), the influence functional F;,;
models the interaction of the system with its environment.
For simplicity, we consider a one degree of freedom system.
One has to represent this Feynman integral in the form of a
Wiener integral in order to the approximate formulas exact
for functional polynomials of a power can be employed.
Omitting some simple considerations [16], we assume here
heuristically that under certain conditions the following for-
mula is valid:
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Here [cpo.0.1.01F [x(7)]JdW'(x) denotes the integral of func-
tional F[x(7)] with respect to the conditional normalized
Wiener measure with integration over the set C[0,0;1,0]
of continuous functions x(7) satisfying the conditions
x(0)=x(1)=0, C?0,0;1,0]=C[0,0;1,0]%X C[0,0;1,0].
Formula (3) can be treated as a generalization of the Haba’s
result.

For evaluation of the double Wiener integral in right-hand
side (RHS) of Eq. (3) we use the approximate formula
obtained in [7,8]:
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where [ is the multiplicity of the functional integral,
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wlout) = {— tsgn(v),

(1-1sgn(v), t>|v].

t<v

)

The formula is exact for functional polynomials of a third
summary power. Thus, the calculation of the Wiener func-
tional integral of multiplicity / is reduced to calculation of
the approximating usual (Riemann) integral of multiplicity
N+1. The error of formula (4) decreases with increasing N
and depends on the physical parameters the functional F may
contain. As we investigate a time evolution, particular atten-
tion will be given to the dependence on the parameter . For
small enough time intervals [f,,7] sufficient accuracy can
often be achieved with relatively small N, in some cases with
the minimum N=[ [17,18]. With growing 7 one has to in-
crease N. However, the considerable increase of N is inexpe-
dient due to the difficulty of evaluation of the approximating
Riemann integral with an appropriate accuracy. In this case
one can divide the total time interval into the parts
[to.t1 1. [t1. 2], .. [t ] 10 <ty <t,<-+-<t,,<t. Taking
into account that J(xj,x]f,tj;xj_l,x;_l,(j_1)=J(xj,x;,tj
—tj_13%j-1,%;_1,0) and successively applying formula (1) to
the subintervals [#,_;,7;] one can obtain

oo o0
J(x,x",15x0,%0,0) :f f JOe,x" 1=t 13%,1,%,_1,0)
—00 —00

XI5 X syt = Tye23 X0 Xy, 0) = J(xy, X1, 1) = 103%0,X%0,0)dx dx ++ dx,_ydx,,_ . (5)

The length of the subintervals should not be necessarily
small. It depends on whether the arrived accuracy of formula
(4) is sufficient for each subinterval.

Actually, formulas (1) and (3)—(5) are the basis of a nu-
merical method of studying time evolution of OQS. One can
outline features of this method. At first, we should note that
the infinite domain of integration in RHS of Eq. (1) has to be
replaced by a finite one in order to apply a quadrature or
cubature formula for numerical evaluation of the integral
[26]. It can be done without considerable loss of accuracy if
the initial condition is a fast vanishing function. It is usual in
this case that the spacial domain of the numerical solution
alters with time very quickly. As the calculation of the propa-
gator (3) with the help of formula (4) does not imply any
space-time discretization or a change of a given potential, the
method at most preserves the initial target setting. The solu-
tion for a moment ¢ can then be obtained from the initial
condition by formula (1) without any transitional states, so
the case of fast changing solutions is especially suitable for
the described approach. It is the case when application of
traditional numerical methods based on different kinds of
changes of initial target setting is conjugated with difficulties
of different kinds. So, the possible application area of the

proposed approach has a little intersection with the areas of
other numerical methods.

The use of formula (5) means, however, a discretization
of the time interval. It gives rise to the problem of determin-
ing finite limits of integration in RHS of Eq. (5), which also
have to be found instead of infinite ones. The limits can be
pointed out approximately for each transitional time point ¢;
successively from the initial condition.

Since the amount of computations by formula (4) does
not grow very fast with growing [, the approach seems
to be useful in case of multidimensional problems. Actually,
for such problems the Monte Carlo method is the only
effective technique in contemporary physics. As the Monte
Carlo method has demerits, the appearance of a possible
alternative is especially interesting in this case. It should
be noted that increase in the number of time subintervals
in formula (5) leads to considerable increase of the
computation expenses with grows of the dimensionality, so
one should make an optimal choice between increasing N
and n.

Some examples of calculations with the help of the
proposed approach are given below. Strunz has derived
the expression for the influence functional Fj,; from the
most general Markovian master equation with the assump-
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FIG. 1. The function p(x,7) calculated for different moments of
time ¢ by formulas (1), (3), (4), (6), and (7) for potential
V(x)=—mw’x*/2 and parameters m=w==1, |y*=o=I=0, |
=1, ¥(0)=p(0)=0, and &0)=107°. The correspondent exact solu-
tions obtained by formulas (8) and (9) are shown by the solid lines.

tion of momentum and position-linear environment operators
[13]:
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Here the parameter I' determines dissipation of energy,
whereas |B]> and |y/*> are the diffusion coefficients
[13,19-22].

The direct application of the approximate formula (4) for
evaluation of the functional integral in the RHS of Eq. (3)
with the influence functional (6) turns out to be impossible
due to the presence of the term m?|y|*[{dr(x—%')* Substitu-
tion of the functions x and X’ by the approximate expressions
from formula (4) leads in this case to the divergent integral
of &% The problem of correct approximation of derivatives
and the possibility of calculation of functional integrals with
such functionals remain open questions of the approach.
One can equate to zero the coefficient |y>, but such
models are rather classical [20]. In some cases, however,
they can be used for a description of quantum phenomena. In
particular, the models are successfully employed in nuclear
physics [23].
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FIG. 2. The function p(x,#) calculated for r=6.6 X 1072 sec by
formulas (1), (3), (4), (6), and (7) for potential V(x)=mw’x*/2 and
parameters m=53mg, m, is the mass of nucleon, |y>=&=0,
Al'=1 MeV, fw=2MeV, |B?=I'mo [19-22], x(0)=p(0)=0,
£0)=0.01 fm?. Propagator (3) also was calculated with the use
of formula (5) for n=2 with the transitional point f,=2.64
X 10722 sec. The correspondent exact solution obtained by formulas
(8) and (9), where w has been replaced by iw, is shown by the solid
line.

Starting from the Strunz’s results, Adamian, Antonenko,
and Scheid [19] have obtained an explicit expression for the
diagonal elements of the reduced density matrix for a system
with the initial state

-x0)? i
b HOF +—17(0)x} ™

W(x) =[27E0)]" eXp{ 160) T h

and the potential V(x)=-mw?*x*/2:

. _ [x— %)
p(x,0) = xlp(0)|x) = [27é(n) ] exp{—— - (®)
24(1)
If x(0)=p(0)=0, x(r) also equals zero and the dispersion in
this Gaussian depends on time for |y|>=@=0 in the follow-
ing way [27]:
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Thus, one can compare the outcomes of numerical computa-
tions with the exact solutions. Figure 1 demonstrates the evo-
lution of the density matrix for three fixed moments of time.
One can see from the figure that the method gives a high
accuracy for the considered time interval even with the use
of formula (4) with the minimum value N=2. It is interesting
to note that in this example we use the potential unbounded
from below, whereas Haba considered the potentials bounded
from below only [12]. In the next example represented in
Figure 2 a fixed moment of time was chosen so that the

&) =

sinh(2wt)
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approximate formula (4) with N=2 gives an unsatisfactorily
crude result. So far formula (5) was not employed, what
actually corresponds to the case n=1. The use of formula (5)
with one transitional time point (n=2) considerably im-
proves accuracy of the solution. In this example the chosen
values of physical parameters are used in real problems from
heavy ion physics.

In the given examples the multiplicity of approximating
Riemann integrals does not exceed 3. Thus, for calculation of
the density matrix we estimated the Riemann integral of mul-
tiplicity 5 without dividing of the total time interval and 7
with the one division. The multiplicity may considerably in-
crease in some cases. Now there are different effective de-

PHYSICAL REVIEW E 71, 066708 (2005)

terministic numerical methods for evaluation of Riemann in-
tegrals of multiplicity up to 20 [24,25]. If needed, one can
also use a Monte Carlo technique. Many questions concerned
both mathematical and physical aspects arise in connection
with the proposed approach. We hope that it will be useful in
practice application, which stimulates development of a cor-
respondent rigorous theory.
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